skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ni, Haobin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate a new connection between e-graphs and Boolean circuits. This allows us to adapt existing literature on circuits to easily arrive at an algorithm for optimal e-graph extraction, parameterized by treewidth, which runs in 2^{O(w^2)} poly(w, n) time, where w is the treewidth of the e-graph. Additionally, we show how the circuit view of e-graphs allows us to apply powerful simplification techniques, and we analyze a dataset of e-graphs to show that these techniques can reduce e-graph size and treewidth by 40-80% in many cases. While the core parameterized algorithm may be adapted to work directly on e-graphs, the primary value of the circuit view is in allowing the transfer of ideas from the well-established field of circuits to e-graphs. 
    more » « less
    Free, publicly-accessible full text available November 14, 2025
  2. Securing blockchain smart contracts is difficult, especially when they interact with one another. Existing tools for reasoning about smart contract security are limited in one of two ways: they either cannot analyze cooperative interaction between contracts, or they require all interacting code to be written in a specific language. We propose an approach based on information flow control~(IFC), which supports fine-grained, compositional security policies and rules out dangerous vulnerabilities. However, existing IFC systems provide few guarantees on interaction with legacy contracts and unknown code. We extend existing IFC constructs to support these important functionalities while retaining compositional security guarantees, including reentrancy control. We mix static and dynamic mechanisms to achieve these goals in a flexible manner while minimizing run-time costs. 
    more » « less